105 research outputs found

    Service Composition for Collective Adaptive Systems

    Get PDF
    Collective adaptive systems are large-scale resource-sharing systems which adapt to the demands of their users by redistributing resources to balance load or provide alternative services where the current provision is perceived to be insufficient. Smart transport systems are a primary example where real-time location tracking systems record the location availability of assets such as cycles for hire, or fleet vehicles such as buses, trains and trams. We consider the problem of an informed user optimising his journey using a composition of services offered by different service providers

    ASCENS: Engineering Autonomic Service-Component Ensembles

    Get PDF
    Today’s developers often face the demanding task of developing software for ensembles: systems with massive numbers of nodes, operating in open and non-deterministic environments with complex interactions, and the need to dynamically adapt to new requirements, technologies or environmental conditions without redeployment and without interruption of the system’s functionality. Conventional development approaches and languages do not provide adequate support for the problems posed by this challenge. The goal of the ASCENS project is to develop a coherent, integrated set of methods and tools to build software for ensembles. To this end we research foundational issues that arise during the development of these kinds of systems, and we build mathematical models that address them. Based on these theories we design a family of languages for engineering ensembles, formal methods that can handle the size, complexity and adaptivity required by ensembles, and software-development methods that provide guidance for developers. In this paper we provide an overview of several research areas of ASCENS: the SOTA approach to ensemble engineering and the underlying formal model called GEM, formal notions of adaptation and awareness, the SCEL language, quantitative analysis of ensembles, and finally software-engineering methods for ensembles

    Automated Capacity Planning for PEPA Models

    Get PDF

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method

    Lumpability for Uncertain Continuous-Time Markov Chains

    Get PDF
    The assumption of perfect knowledge of rate parameters in continuous-time Markov chains (CTMCs) is undermined when confronted with reality, where they may be uncertain due to lack of information or because of measurement noise. In this paper we consider uncertain CTMCs, where rates are assumed to vary non-deterministically with time from bounded continuous intervals. This leads to a semantics which associates each state with the reachable set of its probability under all possible choices of the uncertain rates. We develop a notion of lumpability which identifies a partition of states where each block preserves the reachable set of the sum of its probabilities, essentially lifting the well-known CTMC ordinary lumpability to the uncertain setting. We proceed with this analogy with two further contributions: a logical characterization of uncertain CTMC lumping in terms of continuous stochastic logic; and a polynomial time and space algorithm for the minimization of uncertain CTMCs by partition refinement, using the CTMC lumping algorithm as an inner step. As a case study, we show that the minimizations in a substantial number of CTMC models reported in the literature are robust with respect to uncertainties around their original, fixed, rate values

    Analysis of Petri Net Models through Stochastic Differential Equations

    Full text link
    It is well known, mainly because of the work of Kurtz, that density dependent Markov chains can be approximated by sets of ordinary differential equations (ODEs) when their indexing parameter grows very large. This approximation cannot capture the stochastic nature of the process and, consequently, it can provide an erroneous view of the behavior of the Markov chain if the indexing parameter is not sufficiently high. Important phenomena that cannot be revealed include non-negligible variance and bi-modal population distributions. A less-known approximation proposed by Kurtz applies stochastic differential equations (SDEs) and provides information about the stochastic nature of the process. In this paper we apply and extend this diffusion approximation to study stochastic Petri nets. We identify a class of nets whose underlying stochastic process is a density dependent Markov chain whose indexing parameter is a multiplicative constant which identifies the population level expressed by the initial marking and we provide means to automatically construct the associated set of SDEs. Since the diffusion approximation of Kurtz considers the process only up to the time when it first exits an open interval, we extend the approximation by a machinery that mimics the behavior of the Markov chain at the boundary and allows thus to apply the approach to a wider set of problems. The resulting process is of the jump-diffusion type. We illustrate by examples that the jump-diffusion approximation which extends to bounded domains can be much more informative than that based on ODEs as it can provide accurate quantity distributions even when they are multi-modal and even for relatively small population levels. Moreover, we show that the method is faster than simulating the original Markov chain

    Process algebra modelling styles for biomolecular processes

    Get PDF
    We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed

    Performance Degradation and Cost Impact Evaluation of Privacy Preserving Mechanisms in Big Data Systems

    Get PDF
    Big Data is an emerging area and concerns managing datasets whose size is beyond commonly used software tools ability to capture, process, and perform analyses in a timely way. The Big Data software market is growing at 32% compound annual rate, almost four times more than the whole ICT market, and the quantity of data to be analyzed is expected to double every two years. Security and privacy are becoming very urgent Big Data aspects that need to be tackled. Indeed, users share more and more personal data and user-generated content through their mobile devices and computers to social networks and cloud services, losing data and content control with a serious impact on their own privacy. Privacy is one area that had a serious debate recently, and many governments require data providers and companies to protect users’ sensitive data. To mitigate these problems, many solutions have been developed to provide data privacy but, unfortunately, they introduce some computational overhead when data is processed. The goal of this paper is to quantitatively evaluate the performance and cost impact of multiple privacy protection mechanisms. A real industry case study concerning tax fraud detection has been considered. Many experiments have been performed to analyze the performance degradation and additional cost (required to provide a given service level) for running applications in a cloud system

    Mean-Field Limits Beyond Ordinary Differential Equations

    Get PDF
    16th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2016, Bertinoro, Italy, June 20-24, 2016, Advanced LecturesInternational audienceWe study the limiting behaviour of stochastic models of populations of interacting agents, as the number of agents goes to infinity. Classical mean-field results have established that this limiting behaviour is described by an ordinary differential equation (ODE) under two conditions: (1) that the dynamics is smooth; and (2) that the population is composed of a finite number of homogeneous sub-populations, each containing a large number of agents. This paper reviews recent work showing what happens if these conditions do not hold. In these cases, it is still possible to exhibit a limiting regime at the price of replacing the ODE by a more complex dynamical system. In the case of non-smooth or uncertain dynamics, the limiting regime is given by a differential inclusion. In the case of multiple population scales, the ODE is replaced by a stochastic hybrid automaton
    • …
    corecore